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Abstract

Deception detection is a difficult task, both for
humans and machine learning models. In this
paper, we contribute the novel NLU task of de-
tecting social influence-based disingenuity in
group discussions. We present a novel dataset
for this task, on which we test three state-of-
the-art machine learning models with two op-
timization schemes. We additionally bench-
mark our performance against humans. The
task we propose is challenging; although sev-
eral of our models outperform statistical and
human baselines, overall performance leaves
room to be desired. This task and dataset,
therefore, remain an open challenge for NLU
research.

1 Introduction

Social influence is a well-studied phenomenon in
social science; over the years, numerous studies
have demonstrated that a group’s majority strongly
determines outcomes (Sunstein, 2008; Hackman
and Katz, 2010; Hastie et al., 2013), even dominat-
ing individuals’ private doubts (Asch, 1961; Son
et al., 2019). The phenomenon is powerful, but
often implicit and subtle — one’s peers in a group
may seem outwardly agreeable, but may leave im-
portant countervailing perspectives unsaid.

The ability to detect when a conversation is not
as unanimous as it appears is significant, with
broader implications for deliberative democracy
and group decision-making. When we rely on
groups to decide, we expect that deliberation en-
ables the decision-making body to thoroughly con-
sider diverse perspectives. Social influence-based
disingenuity breaks that assumption.

1.1 Task Definition

Our central research question asks, is it possible
to capture disingenuity using NLU techniques? To

answer this question, we define the novel task of
disingenuity detection as:

a (set of) utterance(s) that is: (1) disin-
genuous to the speaker, but is perceived
to be not disingenuous by the listener;
and (2) uttered in a social context in
which the majority of listeners agree with
the utterance.

The first part of this definition draws from defi-
nitions of deception (Salvetti et al., 2016; Siegler,
1966; Peskov and Cheng, 2020). The second part
establishes the aspect of social influence.

Importantly, individual utterances may not ex-
plicitly express the opinion, but could imply it
collectively. For example, if a person is merely
nodding along in feigned agreement, they may say
“sure,” and “uh-huh” repeatedly, but may not explic-
itly make a deceptive statement. Thus — as we for-
malize in Hypothesis 1 — disingenuity may need
to be inferred through the context of a conversation,
rather than through sentence-level classification.

In this paper, we contribute a novel task in NLU
that seeks to detect social influence-based disinge-
nuity in group discussions. We also contribute a la-
beled dataset (the JUror Disingenuity in Group En-
vironments, or JUDGE dataset) with which to test
model performance on this task. We test three state-
of-the-art machine learning models (Context-Free
Classifier, Contextual Classifier, and Augmented
Contextual Classifier, all defined below) with two
optimization schemes (transfer learning and model-
agnostic meta learning) on this dataset. Several
approaches outperform statistical and human base-
lines in this task, suggesting promising research
avenues for detecting subtle social indications of
disagreement that even humans struggle to identify.
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1.2 Hypotheses
Broadly, we hypothesize that the answer to our
research question is yes: NLU will be successful
in capturing disingenuity. We divide this hypothe-
sis into three parts, each of which makes specific
predictions about our NLU experiments. The hy-
potheses are summarized in Figure 1.

Hypothesis 1 (H1): A Context-Free Classifier
trained on sentence-level inputs will underperform
a Contextual Classifier trained with participant-
level inputs.

Hypothesis 2 (H2): Within models trained on
contextual (participant-level) inputs, those aug-
mented with human-selected features will outper-
form those without augmentation. These human-
selected features enable models to incorporate hu-
man insight about the “tells” of disingenuity —
such as using more positive sentiment, or speaking
in brief sentences (Niculae et al., 2015).

Hypothesis 3 (H3): The JUDGE dataset is very
small in size (fewer than 200 disingenuous state-
ments); therefore, we hypothesize that transfer-
learning techniques will perform poorly. We hy-
pothesize that model-agnostic meta learning (Finn
et al., 2017), which has been shown to signifi-
cantly improve performance on few-shot tasks in
NLU (Dou et al., 2019), will outperform Transfer
Learning in detecting disingenuity on this dataset.

2 Related Work

Given that disingenuity detection is (to our knowl-
edge) a novel task, in this section we will address
such past research on deception detection, which is
a close parallel to our main task. We will also dis-
cuss a modeling technique rarely explored within
this domain: few-shot learning via meta-learning.

2.1 Deception Detection
Many deception papers reveal that humans are not
skilled at detecting lies, while machines are able to
determine common ”tells” of deception.

Peskov and Cheng (2020), for instance, is a very
recent paper introducing a large labeled dataset on
deception via player data from the game Diplo-
macy. The authors then investigated detection of
intended and perceived lies using logistic regres-
sion and neural models. Notably, both the models
and humans generally performed poorly.

Another paper by Chen et al. (2020) explores
the physical and linguistic cues that people use to

detect lies using a game called LieCatcher (text
and audio clips only). Consistent with previous
literature, they find that, on average, participants
deception dection is close to chance. Via logistic
regression, the authors find that speech hesitations
and errors were both strong indicators of deception
for humans and truly an accurate predictor.

Chen et al. (2020), Porter and ten Brinke (2010),
and Pérez-Rosas et al. (2015) also find behavioral
traits important. This underscores the challenge of
our task: we flatten a multi-modal problem (e.g.,
facial expression, tone) into a unimodal one. In this
way, we make an already-tough problem harder.

The mere diversity of ”tells” across each paper
underscores the complexity. Moreover, humans
and models have both historically struggled with
performing well on text-based deception detec-
tion (Peskov and Cheng, 2020; Chen et al., 2020;
Pérez-Rosas et al., 2015).

We do, however, draw inspiration from the multi-
modal literature to lighten our (admittedly quite
heavy) load: for instance, we use social features
such as talkativeness and sentiment as possible in-
dicators for deception.

2.2 Few-Shot Learning via Meta-Learning

Finn et al. (2017) present model-agnostic meta-
learning (MAML), a meta-learning approach de-
signed to enable the fast adaptation of models to
novel unseen tasks. The task of MAML is pre-
sented as the problem of adapting a model to new
tasks drawn from a task distribution. Building on
the work of Finn et. al, Nooralahzadeh et al. (2020)
apply meta-learning to the problem of information
sharing across different languages. They propose
X-MAML, a three-step algorithm, consisting of
first pre-training a model on a high resource lan-
guage (English), then meta-training according to
the MAML algorithm on low-resource languages,
and finally performing zero- or few-shot learning
on the low-resource target languages. X-MAML
outperforms external and internal baselines pre-
trained on SQuAD (Rajpurkar et al., 2016). Lastly,
a recent investigation by Dou et al. (2019) explores
whether transfer learning — the current trend in
training deep-learning based natural understanding
models — is optimal in light of recent advances
in meta-learning for few-shot domain adaptation.
They investigate how well meta-learned represen-
tations transfer to new tasks in the limited-data
regime: to do so, they compare the performance
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MAML

H1
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Context matters.
BERT trained on sentence-level inputs 
will underperform models trained 
with additional context about the 
conversation as a whole.

Augmenting context with human insights 
works even better.
Within models trained on contextual data, models that 
integrate human-selected features outperform models 
without augmentation.

Meta learning works better than transfer learning.
Since we have less data than a typical machine learning task, MAML 
will be more effective on this “few-shot” task.

Contextual
Participant-Level Inputs; Conversational Context

3x2 Results Chart

Contextual
Participant-Level 

Inputs; 
Conversational 

Context

Augmented 
Contextual
Conversational 

Context, 
Augmented with 
Human-Selected 

Features

Context-Free
Sentence-Level 

Inputs; No Context

Figure 1: Hypotheses 1, 2, and 3, juxtaposed against an illustration of our results chart. We demonstrate how each
hypothesis examines a different comparison by examining increasingly narrower slices of our chart.

of Reptile (a variant of the meta-learning update
step) (Nichol et al., 2018) against two baselines,
BERT (Devlin et al., 2018) and MT-DNN (Liu
et al., 2019), on the SciTail dataset (Khot et al.,
2018). They trained on a randomly subsampled
percentage of 0.1%, 1%, 10%, and 100% of the
training data, and found that, unsurprisingly, the
performance of each model improves as more train-
ing data is used; however, Reptile outperforms MT-
DNN and BERT in each instance (and, in the cases
where 0.1% or 1% of the training data is used, Rep-
tile and MT-DNN significantly outperform BERT).

We draw upon the meta-learning papers the the
following way: we use Finn et al., to establish
a base understanding of the MAML algorithm,
Nooralazadeh et. al to approach resource-limited
tasks in the NLU space, and Dou et al. to frame the
relative strengths and weaknesses of meta-learning
approaches to data-limited tasks in NLU.

3 Data

We used two datasets for the training of our mod-
els: the JUDGE Dataset, which we introduce,
and the Deception in Diplomacy Datset, sourced
from (Peskov and Cheng, 2020). In both datasets,
we calibrate the labels such that the positive class
indicates disingenuity or deception, since this is
our phenomenon of interest.

3.1 JUDGE Dataset

This dataset originates from Hu et al. (2021), a
study investigating the consistency of online jury
deliberation. The data involve a contextually rich
setting (jury deliberation), in which participants

engaged in deliberations about topics sourced from
Reddit. Participants were randomly assigned pse-
duonyms on the platform in the form of adjective-
animal, such as happyCow or excitedLion. Before
and after each deliberation, jurors submitted a pri-
vate survey about their opinion of the case; during
the round, they submitted an in-round public vote.
Thus, we labeled participants as “disingenuous” by
comparing in-round voting patterns to out-of-round
private expressions of belief.

Of 356 team deliberations, we identified 31 ju-
rors whose post-deliberation survey results did not
match their in-round votes. After removing partic-
ipants who were clearly entering spam, 29 jurors
collectively made 181 statements. The remaining
deliberations totaled 2,348 jurors, who collectively
made 14,798 statements; we generated one dataset
for the utterance level (JUDGE-utt) and one for the
discussant level (JUDGE-dis). Table 1 summarizes
the metrics:

Statements Participants
Disingenuous 181 29
Not Disingenuous 14798 2348

Table 1: Data metrics for the jury deliberation dataset.
Note that the dataset does not contain statement-level
information about whether a given statement is true or
false. Therefore, we use a coarse heuristic for JUDGE-
utt, in which we assume that everything uttered by a
disingenuous juror is a ‘Disingenuous,’ although we
recognize that, in reality, those jurors have likely made
some true statements.

We split the data into training and testing (omit-
ting validation due to the low number of positive
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labels). At the statement level, 61 disingenuous
statements were included in the training set, and
120 in the test set; at the participant level, 10 disin-
genuous jurors were included in the training set,
and 19 in the test set. The negative class was di-
vided evenly between train and test sets.

3.2 Deception in Diplomacy Dataset

In addition to the JUDGE Dataset, we leveraged the
Deception in Diplomacy Dataset from Peskov and
Cheng (2020) for pre-training and meta training,
since we reasoned that the similar task would trans-
fer to disingenuity detection. This dataset contains
17,289 messages exchanged between players of the
negotiation and strategy-based game, Diplomacy.
Each message is annotated by the sender, with a
score of intended truthfulness, and by the receiver,
with a score of perceived truthfulness. This dataset
is split into training, validation, and test sets, re-
spectively; metrics for each split are provided in
Appendix A.4.

Finally, while we requested access to the Boulder
Lies and Truth dataset from Salvetti et al. (2016)
(which we planned use the same way as the De-
ception in Diplomacy Dataset), we were unable to
obtain access via the Stanford channels.

4 Models

In this section, we describe models used to execute
our task, beginning with baselines, proceeding to
parameterized models, and closing with metrics.

4.1 Baselines

4.1.1 Random Baselines
We define the following three random baselines,
each of which is designed to test a different as-
sumption over the JUDGE dataset.

The first random baseline is a Naive Random
Baseline, in which the baseline model returns
‘Disingenuous’ or ‘Not Disingenuous’ with 50%
probability. This baseline tests the performance of
random guessing without prior knowledge over the
label distribution.

Additionally, we propose a Weighted Random
Baseline that will return ‘Disingenuous’ or ‘Not
Disingenuous’ based on the prevalence of each
class in the training set (e.g., the training has 90%
‘Disingenuous’ instances, and 10% ‘Not Disingenu-
ous’ instances, then the baseline returns ‘Not Disin-
genuous’ 90% of the time, and ‘Disingenuous’ 10%
of the time), and a Frequentist Baseline that will

always return the most frequent class present in
the training set. These two baselines test the per-
formance of knowledge of the label distribution
without knowledge of linguistic features: to out-
perform these baselines, our models will need to
learn actual linguistic features corresponding to a
participant being ‘Disingenuous’.

4.1.2 Human Baseline
Moreover, we test the performance of human anno-
tators on our dataset. We constructed a web-based
data annotation platform (Appendix A.2) in which
users are presented with the transcript of a group
discussion, and are asked to select which discus-
sants - if any - are ‘Disingenuous’ in the context of
the discussion. Thus, we attain human level anno-
tations over the JUDGE-dis dataset. Due to limi-
tations on the number of annotators we were able
to recruit, we annotated only 93 of the 356 team
deliberations, corresponding to 603 of the 2,348 ju-
rors, and 3,871 of the 14,798 messages exchanged.
Although the annotation is incomplete, given that
the annotated samples were drawn I.I.D from the
full dataset, we argue it is likely that human per-
formance on this subsample closely resembles the
results which would have obtained had participants
analyzed the entire dataset.

4.2 Parameterized Models

4.2.1 Context-Free Classifier
To test the performance of context-free embeddings
on this task (as part of H1), we first implement a
Context-Free Classifier, using a BERT backbone
to accept one tokenized statement as input, obtain
textual embeddings, and pass those embeddings
through a linear layer with a sigmoid activation in
order to obtain a likelihood score that the statement
is ‘Disingenuous’.

4.2.2 Contextual Classifier
To compare the performance of the Context-Free
Classifier against a contextual model (as part of
H1), we next implement a Contextual Classifier.
The Contextual Classifier has two input heads: (1)
a contextual embedder accepts as input the tok-
enized statements from all jurors except the one
in question, and (2) an expressive embedder ac-
cepts as input the tokenized statements from the
juror in question. Each embedding head leverages
BERT to produce return vectors corresponding to
embeddings of the contextual text and statement
text, respectively. These embeddings are then fused
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and passed into a linear layer with a sigmoid acti-
vation in order to obtain a likelihood score that the
juror is being ‘Disingenuous’ in the context of their
discussion. Appendix A.1.1 contains an illustration
of the structure of this class of model.

4.2.3 Augmented Contextual Classifier
Next, we implement the Augmented Contextual
Classifier, designed to incorporate insights from
the literature on deception. The Augmented Con-
textual Classifier, like the Contextual Classifier,
contains both a contextual embedder and an ex-
pressive embedder; however, unlike the Contextual
Classifier, it additionally contains four additional
feature extractors corresponding to Niculae et al.
(2015)’s Linguistic Harbingers of Betrayal:

First, disingenuous speakers are likely to be
more positive, we include a sentimental embedder
(a BERT model pre-trained on SST-2).

Second, because disingenuous speakers are
more polite than others in the discussion, we
include a politeness differential feature (which
computes politeness scores of the contextual and
speaker expressions according to Zhang et al.
(2018) and calculates Politeness(context) −
Politeness(speaker) as a feature).

Third, because the talkativeness of the speaker
can suggest disingenuity, we include a talkativeness
feature, (which consists of the number of words of
all expressions made by the speaker over the course
of the discussion).

Regrettably, due to dataset access limitations,
we could not include all features from Niculae
et al. (2015): we’ve therefore omitted Subjectivity
and Argumentativeness/Discourse as features, even
though they are relevant features within Niculae et
al.’s paper.

All of these features are fused, and, as in the Con-
textual Classifier, passed into a linear layer with a
sigmoid activation in order to obtain a likelihood
score that the juror is being ‘Disingenuous‘ in their
discussion. Appendix A.1.2 contains an illustration
of the structure of this class of model.

4.3 Evaluation Metrics

People are largely truthful; with just 1.22% of state-
ments classified as ‘Disingenuous’ and 1.25% of ju-
rors classified as being ‘Disingenuous’, the JUDGE
dataset is heavily imbalanced at both the utterance-
and discussant-level. We therefore selected metrics
by paying close attention to how metrics handle
imbalanced datasets; we excluded ROC-AUC be-

cause the larger class has “dominant influence on
the value of AUC” (Brabec and Machlica, 2018).

A key practice we wanted to avoid was giving
high performance to a model that produces ‘Not
Disingenuous‘ 100% of the time — which could
achieve high accuracy given the extreme imbalance.
We thus chose macro-averaged F-2 scores as a pri-
mary evaluation metric. Macro-averaging enables
us to weigh the classes equally instead of reward-
ing cases in which the ‘Not Disingenuous’ label
dominates. Additionally, we choose F-2 to prior-
itize recall (and thereby penalize the practice of
always returning the negative class). In addition to
macro-averaged F-2, we also report F-1, Precision,
Recall, and Accuracy to give further context.

Finally, we also apply Laplace smoothing,
adding 1 to each entry in the confusion matrix be-
fore calculating precision and recall. We do this be-
cause, in some cases (e.g., the baseline models), re-
turning only the negative class results in undefined
metrics and makes bootstrapping and comparison
impossible. A drawback is that Laplace smoothing
creates a small distortion, and we explicitly note ar-
eas where this occurs. Since accuracy is unaffected
by the problem of not having positives, we report
Accuracy without Laplace smoothing.

5 Experiments

5.1 Transfer Learning Experimentation
5.1.1 Experiment 1: Does Context Matter?
As per H1, to determine the influence of context
on the performance of the model, we first compare
the performance of a Context-Free Classifier on
the JUDGE-utt test set against that of a Contextual
Classifier on the JUDGE-dis test set.

Both the Context-Free Classifier and Contextual
Classifier were pre-trained for 100 epochs on the
Peskov dataset. The Context-Free Classifier was
then fine-tuned for 1 epoch on the JUDGE-utt train-
ing set, while the Contextual Classifier was fine-
tuned for 1 epoch on the JUDGE-dis training set.
Training and tuning for both models used binary
cross entropy (BCE) loss, an AdamW optimizer
with a learning rate α = 1e−4, and early stopping
(with a patience of 5). Due to the imbalance of
the dataset, a balanced sampler (with replacement)
was implemented, so that the each example within
each batch was sampled with a likelihood inversely
proportional to the frequency of its label in the
dataset. In this way, we could ensure that, even
though the Peskov dataset is mildly imbalanced,
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Experimental Results
Model Test Set Training Scheme F-2 F-1 Acc. Prec. Rec.
Naive Random Baseline JUDGE-utt N/A 0.068 0.029 0.447 0.015 0.516
Weighted Random Baseline JUDGE-utt N/A 0.010 0.016 0.984 0.500 0.008
Frequentist Baseline JUDGE-utt N/A 0.010 0.016 0.984 0.500 0.008
Naive Random Baseline JUDGE-dis N/A 0.069 0.030 0.458 0.016 0.476
Weighted Random Baseline JUDGE-dis N/A 0.058 0.087 0.984 0.500 0.048
Frequentist Baseline JUDGE-dis N/A 0.058 0.087 0.984 0.500 0.048
Human Baseline JUDGE-dis N/A 0.074 0.039 0.839 0.022 0.182
Context-Free Classifier JUDGE-utt Transfer Learn. 0.054 0.024 0.576 0.012 0.320
Contextual Classifier JUDGE-dis Transfer Learn. 0.082 0.040 0.755 0.021 0.286
Aug. Contextual Classifier JUDGE-dis Transfer Learn. 0.084 0.036 0.326 0.019 0.714
Context-Free Classifier JUDGE-utt MAML 0.072 0.034 0.751 0.018 0.270
Contextual Classifier JUDGE-dis MAML 0.057 0.026 0.689 0.014 0.238
Aug. Contextual Classifier JUDGE-dis MAML 0.079 0.033 0.016 0.017 0.952

Table 2: Tabular summary of experimental results, with highest results bolded. All columns except for Accuracy
reflect macro-averaged values with Laplace smoothing. Note that the 0.5 precision for the Weighted and Frequentist
Baselines are inflated due to Laplace Smoothing (1/(1 + 1) = 0.5), since the baselines otherwise returned no
positive values. The next highest precision value (which we have bolded instead) is that of the Human Baseline.

and the JUDGE dataset is significantly imbalanced,
our model still learns from both the positive and
negative examples in equal proportion.

5.1.2 Experiment 2: Does Human-Level
Augmentation Improve Performance?

To test H2, we compare the performance of a Con-
textual Classifier against that of an Augmented
Contextual Classifier on the JUDGE-dis test set.
As in Experiment 1, the Augmented Contextual
Classifier was trained for 100 epochs on the Peskov
dataset, then fine-tuned for 1 epoch on the JUDGE-
dis training set. Training and tuning used BCE
loss, an AdamW optimizer with a learning rate
of α = 1e−4, early stopping (patience of 5), and
balanced batch sampling. The performance of the
Augmented Contextual Classifier on the JUDGE-
utt test set was then compared against that of the
Contextual Classifier from Experiment 1.

5.1.3 Experiment 3: Does Meta Learning
Improve Performance in the Few-Shot
Setting?

To test H3, we train a Context-Free Classifier, a
Contextual Classifier, and an Augmented Contex-
tual Classifier using MAML (Finn et al., 2017),
and compare the results against those from Experi-
ment 2, when we trained these same models using
Transfer Learning. Unlike in the prior two experi-
ments, in which the models were pre-trained on the
Peskov dataset, in this experiment, we instantiated
both the JUDGE(-dis for the Context-Free Classi-
fier, -utt for the Contextual and Augmented Contex-
tual Classifiers) and Peskov datasets as meta tasks
from which samples would be drawn during each

iteration of the MAML outer training loop. Each
iteration of MAML, we sample a batch of tasks,
where each task Ti is defined by datasetDi and con-
sists of m samples drawn from Di ( xTi ∈ Rm×d,
yTi ∈ [0, 1]m), and a loss function LTi (which, in
our case, is always the BCE loss). Formally, we
have:

Ti = (xTi , yTi ,LTi)

We perform stratified task sampling: each itera-
tion, we sample two tasks, T1, T2, where, without
loss of generality, T1 is defined over the JUDGE
dataset, and T2 is defined over the Peskov dataset.

For all models, our MAML implementation was
trained for 25 steps using BCE loss, an AdamW
outer optimizer (learning rate β = 1e−3) and an
SGD inner optimizer (learning rate α = 0.05; with
5 adaptation steps per inner loop). In our imple-
mentation, each task consists of 10 examples, 3 of
which are allocated into the support (meta-training)
set, 7 of which are allocated into the query (meta-
testing) set. Each example is sampled into a given
task Ti with a likelihood inversely proportional to
the frequency of its label within Di, to ensure that
the model learns from both positive and negative
examples within each task. Finally, we applied a
weighting to the loss over each task when com-
puting the total loss in each outer step: given that
the task in question was the JUDGE dataset (while
Peskov was primarily used to provide additional
background data from a similar - though not identi-
cal - domain), we added weights to each task loss
when computing the outer MAML loss to empha-
size performance on the JUDGE dataset. Specifi-
cally, we modify the outer gradient update step as



7

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

follows:

θ ← θ − β∇θ
(
LT1(fθ′1) + γLT2(fθ′2)

)
Here, f , θ, θ′ are as in Finn et al. (2017), T1, T2 are
as above, and γ = 0.25 is a discounting factor.

6 Experimental Results

Table 2 includes a summary of our experimental re-
sults, which are also plotted in Figure 2 (additional
plots are included in Appendix A.3). Overall, we
observe that, across the baselines and our models,
performance is quite poor. The maximum F-2 score
attained is only 0.084 — highlighting the difficulty
of our task. Therefore, our ability to out-perform
humans is a noteworthy contribution.

Our models and baselines fail in telling ways:
in general, the machine learning models tended
to have lower precision, as they erred on the side
of predicting the positive class more frequently;
likely a result of the balanced sampling during
training. Excluding the Weighted and Frequen-
tist baselines (see note in Table 2’s caption), the
highest precision was that of the the human base-
line, at only 0.022. On the other hand, the ma-
chine learning models tended to do better on recall;
the Augmented Contextual Classifier with MAML
had a recall of 0.952, and the Augmented Contex-
tual Classifier with transfer learning had a recall of
0.714. These strongly out-perform the baselines,
in which the highest, the Naive Random baseline,
had recall of 0.476, but come at the expense of a
large number of false positives.

6.1 H1: Context Matters
Ultimately, we find that H1 is supported. We ob-
serve that the Context-Free Classifier (F-2 = 0.054)
underperforms the Contextual Classifier (F-2 =
0.082), suggesting that predictions are far better
with added conversational context. We addition-
ally note that, while the Context-Free Classifier
underperformed the statement-level Naive Random
Baseline (F-2 = 0.068), the Contextual Classifier
outperformed not only the random baselines, but
also humans on the task defined in JUDGE-dis,
further supporting H1.

6.2 H2: Augmenting with Human Insights is
Useful.

We also find support for H2. Within transfer
learning-trained models, the model with human
augmentation outperforms the model without: the
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Figure 2: A bar chart showing the results from seven
baselines and five models, with bootstrapped 95% con-
fidence intervals with 500 samples. The primary metric
is the macro-averaged F-2 score with Laplace smooth-
ing. Baselines for JUDGE-utt are marked (utt), and
baselines for JUDGE-dis are marked (dis).

Contextual Classifier had an F-2 of 0.082; the Aug-
mented Classifier performs slightly better, with
F-2 of 0.084. Within MAML-trained models,
the model with human augmentation very signif-
icantly outperformed the one without; while the
augmented MAML model attained an F-2 of 0.079,
which beat the human baseline of 0.074, the non-
augmented model attained an F-2 of only 0.057 —
substantially underperforming both the Naive Ran-
dom Baseline and the Human Baseline. Thus, H2
is supported.

6.3 H3: Meta-Learning Improves
Performance Only When Context Isn’t
Given.

H3 was not supported. We hypothesized that
MAML models would greatly outperform their
Transfer Learning counterparts, but instead saw
mixed results. While the Context-Free Classifier
with MAML (F-2 = 0.072) outperformed its trans-
fer learning counterpart (F-2 = 0.054), MAML per-
formed very poorly for the Contextual Classifier.
The ostensibly strong performance for the Aug-
mented Contextual Classifier (recall = 0.952) ap-
pears to be due only to the model predicting ‘Disin-
genuous’ 100% of the time (the reason recall is not
1.0 is because of Laplace smoothing).

7 Analysis

In this section, we analyze our models’ perfor-
mance and acknowledge limitations of this work.
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7.1 H1: Why does BERT Underperform
Against Baselines?

We suggest two reasons that BERT underperformed
its Human, Contextual, and Augmented Contextual
counterparts. First, the labels of JUDGE-utt were
coarser — and therefore, noisier — than those of
JUDGE-dis: recall that JUDGE-utt labels all state-
ments made by a disingenuous speaker as disin-
genuous, but this assumption is flawed: disingen-
uous speakers make some true statements. This
method of labeling reduced the ability of BERT to
cleanly delineate between the two classes. Second,
as stated in H1, social influence-based disingenuity
is, eponymously, a social phenomenon: understand-
ing and detecting it requires additional contextual
insight which was denied to the BERT model which
was tuned/evaluated on JUDGE-utt.

7.2 H2: Why Did Human Input Boost
Performance?

To better understand this result, we investigate the
weights in the final linear layer of the Augmented
Contextual Classifier (Transfer Learning) corre-
sponding to two of the augmentation features. We
found that the talkativeness weight is −8.71e−8;
more talkative participants were considered more
‘Not Disingenuous.’ These findings align with
our expectations from Niculae et al. (2015)’s Lin-
guistic Harbingers of Betrayal, as well as Chen
et al. (2020)’s findings on hesitation as a decep-
tion tell. Since Augmented Contextual Classifier
(Transfer Learning) correctly identifies a trait of
deception cited in the literature, the talkativeness
weight could have contributed to high performance.
However, the politeness weight (−1.15e−2) is un-
expected; we believed, in accordance with Niculae
et al. (2015) literature, that ‘Disingenuous’ partic-
ipants would be more polite. This leaves an open
question as to whether this is weight is an artefact
of our training process, or whether it implies that
politeness is less of an indicator of disingenuity
than prior literature would imply.

We omit analysis of the features weights of the
Augmented Contextual Classifier (MAML), as the
model failed to show discretion (it predicted ‘Disin-
genuous‘ every time).

7.3 H3: Why does MAML Underperform on
Contextual Models?

We next consider why MAML underperforms on
contextual models. We hypothesize that it is a func-

tion of the task sampling process: given that there
are 10 disingenuous training examples in JUDGE-
dis, and given that we sampled T2 (which contained
5 disingenuous training examples in expectation)
each iteration, we suspect that the process of show-
ing these same few examples to the model over
many MAML iterations led the contextual architec-
tures to overfit to the JUDGE-dis training set. If we
had additional data, we could test this hypothesis
by defining a validation set over JUDGE-dis, and
observing the differences in training/validation loss
on JUDGE-dis during the meta-training process.

7.4 General Limitations
A fundamental limitation of this task is searching
for already-subtle signals in a sparse field. To im-
prove disingenuity detection on textual data, future
work will require far more data, with far more
annotations. Another avenue is improving the met-
rics; though we designed our metrics to avoid a
“only return negative” scenario, the Augmented
MAML model returned only positives and per-
formed well — suggesting that the metrics require
improvement. We also suggest deeply investigating
layers of our models to understand whether they
have truly learned to detect the subtleties of disinge-
nuity, or merely memorized examples. Section 7.2
outlines a few ways in which our model appears
to have learned socially interpretable patterns, but
much work remains.

8 Conclusion

We make the following contributions: to our knowl-
edge, we are the first to approach the task of detect-
ing social influence-based disingenuity using NLU
techniques. We present the JUDGE dataset, over
which we define two tasks (JUDGE-utt, JUDGE-
dis), and we benchmark performance on those tasks
using state-of-the-art NLU models, and (in the case
of JUDGE-dis) human performance. Overall, we
observe low performance on these tasks by both
models and humans, although our top-performing
models outperform humans. Our results confirm
that we have defined a challenging task, and further
research in NLU will be required to obtain strong
performance on this task.
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A Appendix

A.1 Model Architectures

Below, we present architectural diagrams for the Contextual Classifier (Section A.1.1) and for Augumented
Contextual Classifier (Section A.1.2).

A.1.1 Contextual Classifier

Simplified diagram of the Contextual Classifier model architecture. Here, the speaker is IridescentFox.

A.1.2 Augmented Contextual Classifier

Simplified diagram of the Augmented Contextual Classifier architecture. Here, the speaker is IridescentFox.
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A.2 Web Annotation Platform

A screenshot of the web annotation platform that we built in order to obtain human annotations over our dataset.

A.3 Additional Results Plots
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A bar chart showing the results from three baselines and five models, with bootstrapped 95% confidence intervals
with 500 samples. The metric shown is the F-1. The Frequentist and Weighted Baselines have been removed,
because bootstrapping makes the F1 higher than reality.
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A bar chart showing the results from three baselines and five models, with bootstrapped 95% confidence intervals
with 500 samples. The metric shown is Precision. The Frequentist and Weighted Baselines have been removed,
because bootstrapping makes the Precision 0.5 when it is in fact undefined.
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A bar chart showing the results from seven baselines and five models, with bootstrapped 95% confidence intervals
with 500 samples. The metric shown is Recall.
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A.4 Metrics for the Deception in Diplomacy Dataset

# of statements # of players
Lie 591 196
Non-lie 12541 165

Table 3: Data metrics for the Deception in Diplomacy training set.

# of statements # of players
Lie 56 19
Non-lie 1360 21

Table 4: Data metrics for the Deception in Diplomacy validation set.

# of statements # of players
Lie 240 38
Non-lie 2501 45

Table 5: Data metrics for the Deception in Diplomacy test set.


